Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3521, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664456

RESUMEN

Recently, a novel cyclo-heptapeptide composed of alternating D,L-amino acids and a unique thiazolidine heterocycle, called lugdunin, was discovered, which is produced by the nasal and skin commensal Staphylococcus lugdunensis. Lugdunin displays potent antimicrobial activity against a broad spectrum of Gram-positive bacteria, including challenging-to-treat methicillin-resistant Staphylococcus aureus (MRSA). Lugdunin specifically inhibits target bacteria by dissipating their membrane potential. However, the precise mode of action of this new class of fibupeptides remains largely elusive. Here, we disclose the mechanism by which lugdunin rapidly destabilizes the bacterial membrane potential using an in vitro approach. The peptide strongly partitions into lipid compositions resembling Gram-positive bacterial membranes but less in those harboring the eukaryotic membrane component cholesterol. Upon insertion, lugdunin forms hydrogen-bonded antiparallel ß-sheets by the formation of peptide nanotubes, as demonstrated by ATR-FTIR spectroscopy and molecular dynamics simulations. These hydrophilic nanotubes filled with a water wire facilitate not only the translocation of protons but also of monovalent cations as demonstrated by voltage-clamp experiments on black lipid membranes. Collectively, our results provide evidence that the natural fibupeptide lugdunin acts as a peptidic channel that is spontaneously formed by an intricate stacking mechanism, leading to the dissipation of a bacterial cell's membrane potential.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Simulación de Dinámica Molecular , Agua/química , Potenciales de la Membrana/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Membrana Celular/química , Antibacterianos/farmacología , Antibacterianos/química , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Staphylococcus lugdunensis/efectos de los fármacos , Staphylococcus lugdunensis/química , Staphylococcus lugdunensis/metabolismo , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Pruebas de Sensibilidad Microbiana , Nanotubos/química , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/farmacología
2.
Nat Commun ; 14(1): 8038, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38081812

RESUMEN

Biological membranes, composed mainly of phospholipids and cholesterol, play a vital role as cellular barriers. They undergo localized reshaping in response to environmental cues and protein interactions, with the energetics of deformations crucial for exerting biological functions. This study investigates the non-universal role of cholesterol on the structure and elasticity of saturated and unsaturated lipid membranes. Our study uncovers a highly cooperative relationship between thermal membrane bending and local cholesterol redistribution, with cholesterol showing a strong preference for the compressed membrane leaflet. Remarkably, in unsaturated membranes, increased cholesterol mobility enhances cooperativity, resulting in membrane softening despite membrane thickening and lipid compression caused by cholesterol. These findings elucidate the intricate interplay between thermodynamic forces and local molecular interactions that govern collective properties of membranes.


Asunto(s)
Colesterol , Fosfolípidos , Membrana Celular/metabolismo , Fosfolípidos/metabolismo , Membranas/metabolismo , Colesterol/metabolismo , Elasticidad , Membrana Dobles de Lípidos/química
3.
bioRxiv ; 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37214871

RESUMEN

The inhibitory Fcγ receptor FcγRIIb is involved in immune regulation and is known to localize to specific regions of the plasma membrane called lipid rafts. Previous studies suggested a link between the altered lateral receptor localization within the plasma membrane and the functional impairment of the FcγRIIb-I232T variant that is associated with systemic lupus erythematosus. Here, we conducted microsecond all-atom molecular dynamics simulations and IgG binding assays to investigate the lipid nano-environment of FcγRIIb monomers and of the FcγRIIb-I232T mutant within a plasma membrane model, the orientation of the FcγRIIb ectodomain, and its accessibility to IgG ligands. In contrast to previously proposed models, our simulations indicated that FcγRIIb does not favor a cholesterol- or a sphingolipid-enriched lipid environment. Interestingly, cholesterol was depleted for all studied FcγRIIb variants within a 2-3 nm environment of the receptor, counteracting the usage of raft terminology for models on receptor functionality. Instead, the receptor interacts with lipids that have poly-unsaturated fatty acyl chains and with (poly-) anionic lipids within the cytosolic membrane leaflet. We also found that FcγRIIb monomers adopt a conformation that is not suitable for binding to its IgG ligand, consistent with a lack of detectable binding of monomeric IgG in experiments on primary immune cells. However, our results propose that multivalent IgG complexes might stabilize FcγRIIb in a binding-competent conformation. We suggest differences in receptor complex formation within the membrane as a plausible cause of the altered membrane localization or clustering and the altered suppressive function of the FcγRIIb-I232T variant.

4.
Biophys J ; 121(20): 3927-3939, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36045573

RESUMEN

Crucial for mRNA-based vaccines are the composition, structure, and properties of lipid nanoparticles (LNPs) as their delivery vehicle. Using all-atom molecular dynamics simulations as a computational microscope, we provide an atomistic view of the structure of the Comirnaty vaccine LNP, its molecular organization, physicochemical properties, and insight in its pH-driven phase transition enabling mRNA release at atomistic resolution. At physiological pH, our simulations suggest an oil-like LNP core that is composed of the aminolipid ALC-0315 and cholesterol (ratio 72:28). It is surrounded by a lipid monolayer formed by distearoylphosphatidylcholine, ALC-0315, PEGylated lipids, and cholesterol at a ratio of 22:9:6:63. Protonated aminolipids enveloping mRNA formed inverted micellar structures that provide a shielding and likely protection from environmental factors. In contrast, at low pH, the Comirnaty lipid composition instead spontaneously formed lipid bilayers that display a high degree of elasticity. These pH-dependent lipid phases suggest that a change in pH of the environment upon LNP transfer to the endosome likely acts as trigger for cargo release from the LNP core by turning aminolipids inside out, thereby destabilizing both the LNP shell and the endosomal membrane.


Asunto(s)
Membrana Dobles de Lípidos , Nanopartículas , ARN Mensajero/genética , Nanopartículas/química , Liposomas , Colesterol , Polietilenglicoles/química , ARN Interferente Pequeño
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...